# Infrared Spectra and Normal Vibrations of Acetamide and its Deuterated Analogues

## By Isao Suzuki

(Received January 25, 1962)

It has been shown in previous papers<sup>1,2)</sup> that normal coordinate analyses of formamide and N-methylformamide molecules can be made satisfactorily by employing the Urey-Bradley force field and that the force constants determined for formamide can be used without any significant alternations in value in the normal coordinate treatment of N-methylformamide. As a continuation of this research, the acetamide molecule is treated in the present paper.

Only a limited number of spectroscopic investigations of acetamide have been reported<sup>3-5</sup>, and the main interests of these authors have been focused rather on the protonated systems

of the molecule than on acetamide itself. The vibrational assignments for this molecule are very uncertain. Therefore, infrared measurements have been made not only of CH<sub>3</sub>CONH<sub>2</sub>, but also of three deuterated species of acetamides, CH<sub>3</sub>COND<sub>2</sub>, CD<sub>3</sub>CONH<sub>2</sub> and CD<sub>3</sub>COND<sub>2</sub>. From the combined results of these measurements and of the calculation of normal vibrations, the nature of the observed frequencies is discussed in detail in the present paper. The Urey-Bradley force constants obtained in the present work are compared with those in formamide and in N-methylformamide, and the values of some constants are discussed.

### Experimental

Materials.—Acetamide CH<sub>3</sub>CONH<sub>2</sub>. — Acetamide was obtained from a commercial source and was purified by the method of ether precipitation from

<sup>1)</sup> I. Suzuki, This Bulletin, 33, 1359 (1960).

<sup>2)</sup> I. Suzuki, ibid., 35, 540 (1962).

<sup>3)</sup> M. Davies and H. E. Hallam, Trans. Faraday Soc., 47, 1170 (1951).

<sup>4)</sup> N. Albert and R. M. Badger, J. Chem. Phys., 29, 1193 (1958).

<sup>5)</sup> E. Spinner, Spectrochim. Acta, 15, 95 (1959).

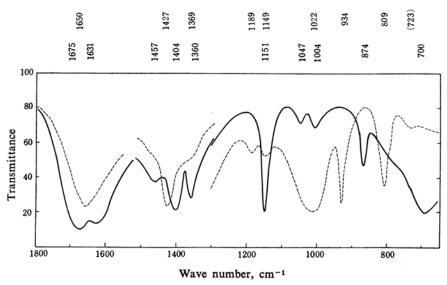



Fig. 1. Infrared spectra of CH<sub>3</sub>CONH<sub>2</sub> (solid line) and CH<sub>3</sub>COND<sub>2</sub> (broken line) in the solid state in the region from 1800 to 650 cm<sup>-1</sup>.

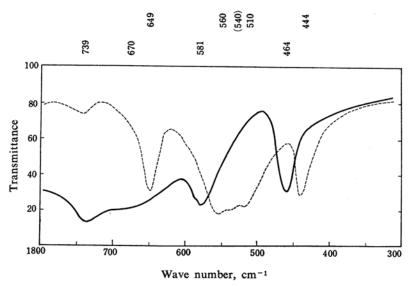



Fig. 2. Infrared spectra of CH<sub>2</sub>CONH<sub>2</sub> (solid line) and CH<sub>2</sub>COND<sub>2</sub> (broken line) in the solid state in the region from 800 to 300 cm<sup>-1</sup>.

an alcohol solution<sup>6)</sup>. The acetamide precipitated was collected, dried in vacuum, and used in the measurements; m. p., 80°C.

C-Deuterated Acetamide CD<sub>3</sub>CONH<sub>2</sub>.—First, CD<sub>3</sub>·COOD was prepared by the thermal decomposition of CD<sub>2</sub>(COOD)<sub>2</sub>, which was obtained from the exchange reaction of CH<sub>2</sub>(COOH)<sub>2</sub> with D<sub>2</sub>O<sup>7</sup>). Then, CD<sub>3</sub>COOD was reacted with liquid ammonia. The ammonium acetate obtained was heated at about 200°C for four hours in a sealed tube, and

the CD<sub>3</sub>COND<sub>2</sub> (containing CD<sub>3</sub>CONHD) thus formed was distilled out in vacuum. It was purified by the method described above.

The exchange reaction with  $D_2O$  was employed to replace the amide hydrogen atoms by deuterium.

Infrared Spectra.—The measurements of the infrared spectra were made in the region from 4000 to 650 cm<sup>-1</sup> with a Hitachi EPI spectrophotometer equipped with sodium chloride optics, and in the region from 800 to 300 cm<sup>-1</sup> with a Nippon Bunko grating spectrophotometer equipped with a cesium bromide foreprism. The infrared spectra of CH<sub>3</sub>·CONH<sub>2</sub> and CH<sub>3</sub>COND<sub>2</sub> were measured in the solid and liquid states and in solutions. The solid state

<sup>6)</sup> E. C. Wagner, J. Chem. Educ., 7, 1135 (1930).

<sup>7)</sup> J. O. Halford and L. C. Anderson, J. Am. Chem. Soc., 58, 736 (1936).

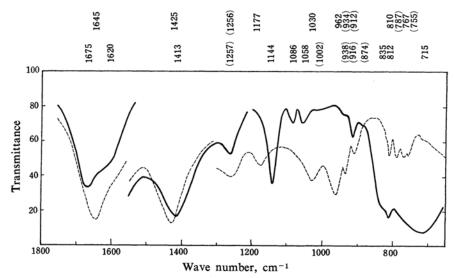



Fig. 3. Infrared spectra of CD<sub>3</sub>CONH<sub>2</sub> (solid line) and CD<sub>3</sub>COND<sub>2</sub> (broken line) in the solid state in the region from 1800 to 650 cm<sup>-1</sup>.

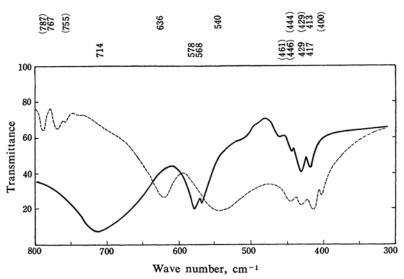



Fig. 4. Infrared spectra of CD<sub>2</sub>CONH<sub>2</sub> (solid line) and CD<sub>2</sub>COND<sub>2</sub> (broken line) in the solid state in the region from 800 to 300 cm<sup>-1</sup>.

spectra were taken in Nujol or hexachlorobutadiene mulls and are shown in Figs. 1 and 2. A small heating cell was used to obtain the spectra in the liquid state. The observed frequencies are summarized in Table I. The spectra of CD<sub>3</sub>CONH<sub>2</sub> and CD<sub>3</sub>COND<sub>2</sub> in the solid state are shown in Figs. 3 and 4. As may be seen from these figures, the spectra of both CD<sub>3</sub>CONH<sub>2</sub> and CD<sub>3</sub>COND<sub>2</sub> are complicated, particularly in the region below 1000 cm<sup>-1</sup>. This is due to the presence of bands arising from the CHD<sub>2</sub>-species which are contained in the samples. Therefore, the assignments of those vibration bands which are mainly associated with the CD<sub>3</sub> rocking and CC' in-plane deformation vibrations are uncertain. When the values of the

force constants were refined, they were not used as frequency data.

### Normal Coordinate Treatment

The calculation of normal vibrations was made as a nine-body problem by Wilson's method<sup>8</sup>. The planar model (C<sub>8</sub>), except for two hydrogen atoms attached to the methyl carbon atom (C')\*1, was adopted (see Fig. 5).

<sup>8)</sup> E. B. Wilson, J. Chem. Phys., 7, 1047 (1930); 9, 96

<sup>(1941).

\*1</sup> C and C' denote the carbonyl and methyl carbon atoms respectively.

| TAELE I. | OBSERVED | FREQUENCIES | (IN | cm <sup>-1</sup> | ) ( | OF | ACETAMIDE |
|----------|----------|-------------|-----|------------------|-----|----|-----------|
|----------|----------|-------------|-----|------------------|-----|----|-----------|

|       | (a) CH <sub>3</sub> CON | $H_2$                   | (b) CH <sub>3</sub> COND <sub>2</sub> |        |                         |  |  |  |
|-------|-------------------------|-------------------------|---------------------------------------|--------|-------------------------|--|--|--|
| Solid | Liquid                  | CHCl <sub>3</sub> soln. | Solid                                 | Liquid | CHCl <sub>3</sub> soln. |  |  |  |
| 3340  | 3355                    | 3520 (3360)             | 2920                                  | 2937   | (2980)                  |  |  |  |
| 3163  | 3165                    | 3403 (3161)             | 2505                                  | 2555   | 2537                    |  |  |  |
| 2820  | 2815                    |                         | 2395                                  | 2405   | (2460)                  |  |  |  |
|       |                         |                         | 2315                                  |        | 2372                    |  |  |  |
| 1675  | 1660?                   | 1680                    | 1650                                  | 1634?  | 1668                    |  |  |  |
| 1632  | 1600                    | 1594                    |                                       | (1468) |                         |  |  |  |
| 1457  | 1458                    | 1440?                   | 1427                                  | 1405   | 1390                    |  |  |  |
| 1404  | 1388                    | 1378                    | 1369                                  | 1360   | 1355                    |  |  |  |
| 1360  | 1345                    | 1336                    | 1189                                  | 1174   |                         |  |  |  |
| 1152  | 1138                    | 1118                    | 1150                                  |        |                         |  |  |  |
| 1047  | 1048                    | 1041                    | 1022                                  | 1035   | (1035)                  |  |  |  |
| 1005  | 998                     | 981                     | 934                                   | 921    |                         |  |  |  |
| 874   | 865                     | 872                     | 809                                   | 801    |                         |  |  |  |
| (739) |                         |                         | 649                                   |        | 613*                    |  |  |  |
| 667   |                         | 527*                    | 560                                   |        | 538*                    |  |  |  |
| 581   |                         | 557*                    | 560                                   |        | 518*                    |  |  |  |
| 464   |                         | 443*                    | 516                                   |        | 400*                    |  |  |  |
|       |                         |                         | 444                                   |        | 433*                    |  |  |  |

\* CH<sub>3</sub>CN solution

TABLE II. SYMMETRY COORDINATES

| $S_i$    | S = UR                                                                                                             | Vibrational mode                  | Abbr.                       |
|----------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------|
| $S_1$    | $\Delta r_{14}$                                                                                                    | CN stretching                     | $\nu(CN)$                   |
| $S_2$    | $\Delta r_{45}$                                                                                                    | CC' stretching                    | ν(CC')                      |
| $S_3$    | $\Delta r_{46}$                                                                                                    | CO stretching                     | ν(CO)                       |
| $S_4$    | $(2\Delta\alpha_{23}-\Delta\alpha_{42}-\Delta\alpha_{34})/\sqrt{6}$                                                | NH <sub>2</sub> bending           | $b(\mathrm{NH_2})$          |
| $S_5$    | $(\Delta\alpha_{42}-\Delta\alpha_{34})/\sqrt{2}$                                                                   | NH <sub>2</sub> rocking           | $r(NH_2)$                   |
| $S_6$    | $(2\Delta\alpha_{61}-\Delta\alpha_{15}-\Delta\alpha_{56})/\sqrt{6}$                                                | NCO deformation                   | $\delta$ (NCO)              |
| $S_7$    | $(\Delta\alpha_{15}-\Delta\alpha_{56})/\sqrt{2}$                                                                   | CC' deformation                   | $\delta(CC')$               |
| $S_8$    | $(2\Delta\alpha_{89}-\Delta\alpha_{78}-\Delta\alpha_{79})/\sqrt{6}$                                                | CH <sub>3</sub> asym. deformation | $\delta_{\rm a}({ m CH_3})$ |
| $S_9$    | $(\Delta\alpha_{47}+\Delta\alpha_{48}+\Delta\alpha_{49}-\Delta\alpha_{78}-\Delta_{79}-\Delta\alpha_{89})/\sqrt{6}$ | CH <sub>3</sub> sym. deformation  | $\delta_{\rm s}({ m CH_3})$ |
| $S_{10}$ | $(2\Delta\alpha_{47}-\Delta\alpha_{48}-\Delta\alpha_{49})/\sqrt{6}$                                                | CH <sub>3</sub> rocking           | $r(CH_3)$                   |

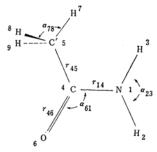



Fig. 5. Molecular structure and internal coordinates of acetamide.

The normal vibrations are classified into 14 in-plane (A') and 7 out-of-plane (A'') vibrations, of which the in-plane vibrations are treated. The structural parameters used in the present work are as follows: the bond lengths of  $r(C=O)=1.28\text{\AA}$ ,  $r(C-N)=1.38\text{\AA}$ ,  $r(C-C')=1.51\text{\AA}$ ,  $r(N-H)=1.02\text{\AA}$  and  $r(C'-H)=1.09\text{\AA}^{9}$ 

and the bond angles of 120° for those around the N and C atoms and of 109°47′ for those around the C′ atom. To simplify the calculation, lower frequencies are separated from four higher frequencies which are mainly associated with the CH and NH(D) stretching vibrations<sup>8</sup>). The symmetry coordinates used are given in Table II (see also Fig. 5 for definitions of the internal coordinates).

Force Constants.—As has already been mentioned, the potential function used in the calculation is of the Urey-Bradley type<sup>10</sup>:

$$2V = \sum_{i} K_{i} (\Delta r_{i})^{2} + \sum_{i \neq j} H_{ij} r_{i}^{0} r_{j}^{0} (\Delta \alpha_{ij})$$
$$+ \sum_{i \neq j} F_{ij} (\Delta q_{ij})^{2} + \text{Linear terms}$$

The same notations as in the preceding papers<sup>1,2)</sup> are used. In addition, the intramolecular tension,  $\kappa$ , is introduced in the elements of the F-matrix when the linear terms are eliminated by a redundancy condition<sup>10)</sup>.

<sup>9)</sup> F. Senti and D. Harker, J. Am. Chem. Soc., 62, 2008 (1940).

<sup>10)</sup> T. Shimanouchi, J. Chem. Phys., 17, 245, 734, 848 (1949).

TABLE III. FORCE CONSTANTS IN md./A\*

|   | $K_{\mathrm{CN}}$ | 5.75 (6.15)                         | $H_{\mathtt{HNH}}$ | 0.40 (0.40) | $F_{\mathrm{H(N)H}}$             | 0 (0)       |
|---|-------------------|-------------------------------------|--------------------|-------------|----------------------------------|-------------|
| Α | $K_{\text{CO}}$   | 8.50 (8.80)                         | $H_{ m HNC}$       | 0.32 (0.32) | $F_{ m H\cdots C}$               | 0.46 (0.46) |
|   |                   |                                     | $H_{ m NCO}$       | 0.34 (0.34) | $F_{ m N\cdots O}$               | 1.50 (1.50) |
| В | $K_{CC}$          | 2.40                                | $H_{\mathtt{CCN}}$ | 0.30        | $F_{\mathbf{C}\cdots\mathbf{N}}$ | 0.70        |
|   |                   |                                     | $H_{CCO}$          | 0.32        | $F_{C \cdots O}$                 | 0.72        |
| C | κ                 | $-0.05 \text{ (md} \cdot \text{A)}$ | $H_{ m HCH}$       | 0.43        | $F_{ m H(C)H}$                   | 0.03        |
|   |                   |                                     | $H_{ m HCC}$       | 0.25        | $F_{ m H(C)C}$                   | 0.47        |

<sup>\*</sup> Initial set of values for the force constants in group A are given in parenthesis.

Therefore, eighteen force constants are necessary to calculate normal vibrations of the acetamide molecule. As may be seen from Table III, these force constants are classified into three groups, A, B and C, and their values were first determined by the following method: The constants in group A were directly transferred from the formamide molecule<sup>1)</sup>. The constants in group B are associated with the "joint" of the CH<sub>3</sub> and amide groups, and  $K_{CC} = 3.00$ md./A,  $H_{CCN} = 0.23 \, md./A$ ,  $H_{CCO} = 0.31 \, md./A$ , and  $F_{\text{C...N}} = F_{\text{C...O}} = 0.50 \,\text{md./A}$  were first assumed\*2. Those belonging to group C are associated with the methyl group. In our laboratory, a number of compounds containing methyl groups have been studied, and it has been found that one set of constants,  $H_{\rm HCH}\!=\!0.43$ md./A,  $F_{\rm H...H} = 0.03$  md./A and  $\kappa = -0.05$  md·A, always gives a good frequency fit with the observed data. These values have also been adopted in the present work; they are not varied in the course of refinements. As for other constants,  $H_{\rm HCC} = 0.25$  md./A and  $F_{\rm H...c} =$ 0.45 md./A were used.

The normal vibrations were calculated from these force constants, and they give fairly good agreement with the observed frequencies. Then the values of the constants were refined as indicated by the Jacobian matrix<sup>12</sup> to obtain a better frequency fit. At the first step of the refinements, only the frequencies of CH<sub>3</sub>CONH<sub>2</sub> and CH<sub>3</sub>COND<sub>2</sub> were used. Then at the final step those of CD<sub>3</sub>CONH<sub>2</sub> and CD<sub>3</sub>COND<sub>2</sub> above 1000 cm<sup>-1</sup> were also taken into account. However, the frequencies of the latter two molecules found below 1000 cm<sup>-1</sup> \*3 were not used for the reason indicated in the preceding section. At first the force constants in group B were subjected to refinements, since their values were less certain than those in groups A and C.

Although only five constnats were refined,

the frequency fit between the observed and the calculated was improved remarkably. In fact, the agreements were so good that refinement was practically unnecessary for the constants in groups A and C, except for two stretching constants,  $K_{\rm CN}$  and  $K_{\rm CO}$ . The final set of force constants is listed in Table III.

#### Results and Discussion

Assignments of Vibration Bands. — The frequencies calculated from the force constants given in Table III are compared with the observed frequencies in Tables IV(a)—(d) for each isotopic species of acetamide. In Tables IV(a)—(d), the potential energy distribution among the symmetry coordinates is also given for each normal mode. This represents the quantitative assignment.

In CH<sub>3</sub>CONH<sub>2</sub>, each normal vibration takes place along one or two symmetry coordinates and is easily identified. As expected, the band at 1676 cm<sup>-1</sup> of acetamide is associated with the  $\nu$ (CO) mode. However, the  $\nu$ (CN) and b(NH<sub>2</sub>) vibrations also contribute to this band. The bands at 1632 and 1152 cm<sup>-1</sup> are mainly associated with the  $b(NH_2)$  and  $r(NH_2)$  vibrations respectively, and the fact that they move to lower frequencies in a CHCl<sub>3</sub> solution is consistent with the above assignments. The bands at 1457, 1360 and 1005 cm<sup>-1</sup> are associated with the methyl deformation vibrations and are assigned, respectively, to the  $\delta_a(CH_3)$ ,  $\delta_s(CH_3)$  and  $r(CH_3)$  vibrations. The nature of the 1404 cm<sup>-1</sup> band is a little complicated. This band can be called the  $\nu(CN)$  band, although there are considerable contributions from the  $\nu(CC')$ ,  $r(NH_2)$ ,  $\delta(NCO)$  and  $\delta_s(CH_3)$ vibrations. The band at 864 cm<sup>-1</sup> is associated with the  $\nu(CC')$  vibrations, while the bands at 581 cm<sup>-1</sup> and 464 cm<sup>-1</sup> are associated with  $\delta$ (NCO) and  $\delta$ (CC') vibrations respectively.

Instead of the  $1632\,\mathrm{cm^{-1}}$  band, a band appears at  $1189\,\mathrm{cm^{-1}}$  in  $\mathrm{CH_3COND_2}$ ; this is assigned to an almost pure  $b(\mathrm{ND_2})$  vibration. The  $\nu(\mathrm{CO})$  band is lowered, probably by the decoupling of the  $b(\mathrm{NH_2})$  vibrations, while the  $\nu(\mathrm{CN})$  band moves to a higher frequency and appears at  $1427\,\mathrm{cm^{-1}}$ . The  $b(\mathrm{ND_2})$  vibration

<sup>\*2</sup> Miyazawa et al., obtained a good frequency agreement for the skeletal deformation vibrations of N-methylacetamide<sup>11</sup> from the values of  $H_{\rm CH_3-C-N}=H_{\rm CH_3-C=0}=0.30$  md./A and  $F_{\rm CH_3-M-N}=F_{\rm CH_3-M-0}=0.50$  md./A, although they treated the methyl group as a dynamic unit.

<sup>\*3</sup> Those frequencies are given in parentheses in the first column of Tables IV (c) and (d).

Table IV. Observed and calculated frequencies, and potential energy distributions among symmetry coordinates;  $(F_{ii}L_{is}^2/\lambda_s)\times 100$ 

|                                                                                                                            |                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                             | (a)                                                                          | CH <sub>2</sub> C                                                                                | CONH                                                                               |                                                                |                                                                            |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                      |                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                                                                                            |                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                             | (a)                                                                          | C113C                                                                                            | , O1 1112                                                                          | •                                                              | P. E                                                                       | . D.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                      |                                                                                                               |
| 0                                                                                                                          |                                                                                                                                                          |                                                                                                                                                               | $\Delta \nu$                                                                                                                                                      | Δ                                                                                                                           | $\widehat{S_1}$                                                              | $S_2$                                                                                            | $S_3$                                                                              | $S_4$                                                          | $S_5$                                                                      | $S_6$                                                                       | S <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S_8$                                                                                                                                                                                     | $S_9$                                                                                | $S_{10}$                                                                                                      |
| $egin{array}{c} Q_i \ Q_1 \end{array}$                                                                                     | ν <sub>obs</sub><br>1676                                                                                                                                 | $\frac{\nu_{\rm calcd}}{1678}$                                                                                                                                | – 2                                                                                                                                                               | 0.1                                                                                                                         | 28                                                                           | 1                                                                                                | 59                                                                                 | 16                                                             | 4                                                                          | 1                                                                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                         | 0                                                                                    | 4                                                                                                             |
| $Q_2$                                                                                                                      | 1632                                                                                                                                                     | 1630                                                                                                                                                          | + 2                                                                                                                                                               | 0.1                                                                                                                         | 1                                                                            | 1                                                                                                | 17                                                                                 | 80                                                             | 2                                                                          | 1                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                         | 0                                                                                    | 1                                                                                                             |
| $Q_3$                                                                                                                      | 1457                                                                                                                                                     | 1462                                                                                                                                                          | _ 5                                                                                                                                                               | 0.4                                                                                                                         | 1                                                                            | 1                                                                                                | 3                                                                                  | 0                                                              | 1                                                                          | 1                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 82                                                                                                                                                                                        | 0                                                                                    | 9                                                                                                             |
| $Q_4$                                                                                                                      | 1404                                                                                                                                                     | 1396                                                                                                                                                          | - 8                                                                                                                                                               | 0.6                                                                                                                         | 48                                                                           | 13                                                                                               | 2                                                                                  | 4                                                              | 10                                                                         | 14                                                                          | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                         | 12                                                                                   | 0                                                                                                             |
| $Q_5$                                                                                                                      | 1360                                                                                                                                                     | 1366                                                                                                                                                          | - 6                                                                                                                                                               | 0.5                                                                                                                         | 6                                                                            | 20                                                                                               | 1                                                                                  | 0                                                              | 2                                                                          | 2                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                         | 92                                                                                   | 0                                                                                                             |
| $Q_6$                                                                                                                      | 1152                                                                                                                                                     | 1133                                                                                                                                                          | +19                                                                                                                                                               | 1.7                                                                                                                         | 7                                                                            | 1                                                                                                | 16                                                                                 | 6                                                              | 70                                                                         | 1                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                         | 0                                                                                    | 0                                                                                                             |
| $Q_7$                                                                                                                      | 1005                                                                                                                                                     | 1002                                                                                                                                                          | + 3                                                                                                                                                               | 0.3                                                                                                                         | 5                                                                            | 0                                                                                                | 2                                                                                  | 0                                                              | 1                                                                          | 0                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11                                                                                                                                                                                        | 0                                                                                    | 81                                                                                                            |
| $Q_8$                                                                                                                      | 874                                                                                                                                                      | 892                                                                                                                                                           | -18                                                                                                                                                               | 2.1                                                                                                                         | 10                                                                           | 61                                                                                               | 4                                                                                  | 1                                                              | 7                                                                          | 8                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                         | 0                                                                                    | 0                                                                                                             |
| $Q_9$                                                                                                                      | 581                                                                                                                                                      | 580                                                                                                                                                           | + 1                                                                                                                                                               | 0.2                                                                                                                         | 0                                                                            | 10                                                                                               | 0                                                                                  | 0                                                              | 3                                                                          | 74                                                                          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                         | 0                                                                                    | 0<br>5                                                                                                        |
| $Q_{10}$                                                                                                                   | 464                                                                                                                                                      | 465                                                                                                                                                           | + 1                                                                                                                                                               | 0.2                                                                                                                         | 1                                                                            | 0                                                                                                | 1                                                                                  | 0                                                              | 2                                                                          | 5                                                                           | 82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                         | 0                                                                                    | 3                                                                                                             |
|                                                                                                                            |                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                             | (b)                                                                          | CH <sub>3</sub> C                                                                                | COND                                                                               | 2                                                              |                                                                            |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                      |                                                                                                               |
|                                                                                                                            |                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                             |                                                                              |                                                                                                  |                                                                                    |                                                                | P. F                                                                       | . D.                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                      |                                                                                                               |
| $Q_i$                                                                                                                      | $\nu_{ m obs}$                                                                                                                                           | vcaled                                                                                                                                                        | $\Delta \nu$                                                                                                                                                      | Δ                                                                                                                           | $\widehat{S_1}$                                                              | $S_2$                                                                                            | $S_3$                                                                              | S <sub>4</sub>                                                 | $S_5$                                                                      | $S_6$                                                                       | $S_7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>S</b> <sub>8</sub>                                                                                                                                                                     | $S_9$                                                                                | $S_{10}$                                                                                                      |
| $Q_1$                                                                                                                      | 1650                                                                                                                                                     | 1666                                                                                                                                                          | -16                                                                                                                                                               | 1.0                                                                                                                         | 24                                                                           | 2                                                                                                | 75                                                                                 | 1                                                              | 3                                                                          | 1                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                         | 0                                                                                    | 6                                                                                                             |
| $\widetilde{Q}_2$                                                                                                          | (1455)                                                                                                                                                   | 1461                                                                                                                                                          | _                                                                                                                                                                 |                                                                                                                             | 1                                                                            | 1                                                                                                | 4                                                                                  | 0                                                              | 0                                                                          | 1                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81                                                                                                                                                                                        | 0                                                                                    | 8                                                                                                             |
| $Q_3$                                                                                                                      | 1427                                                                                                                                                     | 1419                                                                                                                                                          | + 8                                                                                                                                                               | 0.5                                                                                                                         | 56                                                                           | 13                                                                                               | 7                                                                                  | 13                                                             | 3                                                                          | 12                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5                                                                                                                                                                                         | 7                                                                                    | 0                                                                                                             |
| $Q_4$                                                                                                                      | 1369                                                                                                                                                     | 1367                                                                                                                                                          | + 2                                                                                                                                                               | 0.1                                                                                                                         | 4                                                                            | 16                                                                                               | 1                                                                                  | 1                                                              | 0                                                                          | 1                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                         | 98                                                                                   | 0                                                                                                             |
| $Q_5$                                                                                                                      | 1189                                                                                                                                                     | 1191                                                                                                                                                          | - 2                                                                                                                                                               | 0.2                                                                                                                         | 1                                                                            | 14                                                                                               | 0                                                                                  | 72                                                             | 3                                                                          | 8                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                         | 0                                                                                    | 2                                                                                                             |
| $Q_6$                                                                                                                      | 1022                                                                                                                                                     | 1006                                                                                                                                                          | +16                                                                                                                                                               | 1.6                                                                                                                         | 1                                                                            | 3                                                                                                | 9                                                                                  | 0                                                              | 5                                                                          | 2                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                        | 0                                                                                    | 70                                                                                                            |
| $Q_7$                                                                                                                      | 934                                                                                                                                                      | 936                                                                                                                                                           | - 2                                                                                                                                                               | 0.2                                                                                                                         | 13                                                                           | 5                                                                                                | 7                                                                                  | 10                                                             | 36<br>35                                                                   | 6<br>0                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1<br>0                                                                                                                                                                                    | 0<br>0                                                                               | 10<br>0                                                                                                       |
| $Q_8$                                                                                                                      | 809                                                                                                                                                      | 818                                                                                                                                                           | - 9<br>+ 4                                                                                                                                                        | 1.1                                                                                                                         | 6<br>0                                                                       | <b>50</b>                                                                                        | 0<br>1                                                                             | 3<br>0                                                         | 35<br>7                                                                    | 64                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                         | 0                                                                                    | 1                                                                                                             |
| $Q_9$                                                                                                                      | 560<br>444                                                                                                                                               | 556<br>442                                                                                                                                                    | + 4 + 2                                                                                                                                                           | 0.8                                                                                                                         | 1                                                                            | 0                                                                                                | 0                                                                                  | 0                                                              | 8                                                                          | 12                                                                          | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                         | 0                                                                                    | 4                                                                                                             |
| $Q_{10}$                                                                                                                   | 444                                                                                                                                                      | 442                                                                                                                                                           | + 2                                                                                                                                                               | 0.5                                                                                                                         |                                                                              |                                                                                                  |                                                                                    |                                                                | 0                                                                          |                                                                             | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | v                                                                                                                                                                                         | ·                                                                                    | •                                                                                                             |
|                                                                                                                            |                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                             | (c)                                                                          | CD <sub>2</sub> C                                                                                | ONH <sub>2</sub>                                                                   |                                                                |                                                                            |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                      |                                                                                                               |
|                                                                                                                            |                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                             | (0)                                                                          | CD                                                                                               | 011112                                                                             |                                                                | DE                                                                         | D                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                      |                                                                                                               |
|                                                                                                                            |                                                                                                                                                          |                                                                                                                                                               |                                                                                                                                                                   |                                                                                                                             | _                                                                            |                                                                                                  |                                                                                    |                                                                | P. E                                                                       | <u> </u>                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                           |                                                                                      | _                                                                                                             |
| $Q_i$                                                                                                                      | $ u_{ m obs}$                                                                                                                                            | νcalcd                                                                                                                                                        | Δν                                                                                                                                                                | Δ                                                                                                                           | $\widetilde{S_1}$                                                            | $S_2$                                                                                            | <b>S</b> <sub>2</sub>                                                              | S <sub>4</sub>                                                 | $S_5$                                                                      | $S_6$                                                                       | S <sub>7</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>S</b> <sub>8</sub>                                                                                                                                                                     | S <sub>9</sub>                                                                       | $S_{10}$                                                                                                      |
| $Q_1$                                                                                                                      | 1675                                                                                                                                                     | 1672                                                                                                                                                          | + 3                                                                                                                                                               | 0.2                                                                                                                         | S <sub>1</sub> 29                                                            | $S_2$ 1                                                                                          | S <sub>2</sub> 57                                                                  | S <sub>4</sub> 21                                              | S <sub>5</sub> 4                                                           | $S_6$ 1                                                                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                         | 0                                                                                    | 2                                                                                                             |
| $Q_1 \ Q_2$                                                                                                                | 1675<br>1620                                                                                                                                             | 1672<br>1629                                                                                                                                                  | + 3<br>- 9                                                                                                                                                        | 0.2<br>0.6                                                                                                                  | S <sub>1</sub> 29 0                                                          | $S_2$ 1 2                                                                                        | S <sub>2</sub> 57 22                                                               | S <sub>4</sub> 21 75                                           | S <sub>5</sub> 4 2                                                         | S <sub>6</sub> 1 1                                                          | 7<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                         | 0                                                                                    | 2<br>1                                                                                                        |
| $egin{array}{c} Q_1 \ Q_2 \ Q_3 \end{array}$                                                                               | 1675<br>1620<br>1413                                                                                                                                     | 1672<br>1629<br>1394                                                                                                                                          | + 3<br>- 9<br>+19                                                                                                                                                 | 0.2<br>0.6<br>1.4                                                                                                           | S <sub>1</sub> 29 0 56                                                       | S <sub>2</sub> 1 2 27                                                                            | S <sub>2</sub><br>57<br>22<br>3                                                    | S <sub>4</sub> 21 75 4                                         | S <sub>5</sub> 4 2 12                                                      | S <sub>6</sub> 1 1 1                                                        | 7<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0<br>0<br>0                                                                                                                                                                               | 0<br>0<br>0                                                                          | 2<br>1<br>1                                                                                                   |
| $egin{array}{c} Q_1 \ Q_2 \ Q_3 \ Q_4 \end{array}$                                                                         | 1675<br>1620<br>1413<br>1144                                                                                                                             | 1672<br>1629<br>1394<br>1133                                                                                                                                  | + 3<br>- 9<br>+19<br>+11                                                                                                                                          | 0.2<br>0.6<br>1.4<br>0.9                                                                                                    | S <sub>1</sub> 29 0 56 7                                                     | S <sub>2</sub> 1 2 27 0                                                                          | S₂<br>57<br>22<br>3<br>16                                                          | S <sub>4</sub> 21 75 4 0                                       | S <sub>5</sub> 4 2 12 70                                                   | S <sub>6</sub> 1 1 17 1                                                     | 7<br>2<br>2<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0                                                                                                                                                                               | 0<br>0<br>0                                                                          | 2<br>1<br>1<br>0                                                                                              |
| $Q_1$ $Q_2$ $Q_3$ $Q_4$ $Q_5$                                                                                              | 1675<br>1620<br>1413<br>1144<br>1086                                                                                                                     | 1672<br>1629<br>1394<br>1133<br>1092                                                                                                                          | + 3 $- 9$ $+ 19$ $+ 11$ $- 6$                                                                                                                                     | 0.2<br>0.6<br>1.4<br>0.9<br>0.6                                                                                             | S <sub>1</sub> 29 0 56 7                                                     | S <sub>2</sub> 1 2 27 0 30                                                                       | S <sub>2</sub><br>57<br>22<br>3<br>16<br>0                                         | S <sub>4</sub> 21 75 4 0 0                                     | S <sub>5</sub> 4 2 12 70 2                                                 | S <sub>6</sub> 1 1 17 1 0                                                   | 7<br>2<br>2<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>0                                                                                                                                                                          | 0<br>0<br>0<br>0<br>86                                                               | 2<br>1<br>1<br>0<br>0                                                                                         |
| $Q_1$ $Q_2$ $Q_3$ $Q_4$ $Q_5$ $Q_6$                                                                                        | 1675<br>1620<br>1413<br>1144<br>1086<br>1058                                                                                                             | 1672<br>1629<br>1394<br>1133<br>1092<br>1048                                                                                                                  | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + 19 \\ + 11 \\ - \ 6 \\ + 10 \end{array}$                                                                                    | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9                                                                                      | S <sub>1</sub> 29 0 56 7 1 0                                                 | S <sub>2</sub> 1 2 27 0 30 0                                                                     | S <sub>2</sub> 57 22 3 16 0                                                        | S <sub>4</sub> 21 75 4 0 0                                     | S <sub>5</sub> 4 2 12 70 2 0                                               | S <sub>6</sub> 1 1 17 1 0 0                                                 | 7<br>2<br>2<br>1<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0<br>0<br>0<br>0<br>0<br>91                                                                                                                                                               | 0<br>0<br>0<br>0<br><b>86</b><br>0                                                   | 2<br>1<br>1<br>0<br>0<br>5                                                                                    |
| Q <sub>1</sub><br>Q <sub>2</sub><br>Q <sub>3</sub><br>Q <sub>4</sub><br>Q <sub>5</sub><br>Q <sub>6</sub><br>Q <sub>7</sub> | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)                                                                                                    | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842                                                                                                           | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + 19 \\ + 11 \\ - \ 6 \\ + 10 \\ - \ 7 \end{array}$                                                                           | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9                                                                                      | S <sub>1</sub> 29 0 56 7 1 0 11                                              | S <sub>2</sub> 1 2 27 0 30 0 14                                                                  | S <sub>2</sub><br>57<br>22<br>3<br>16<br>0                                         | S <sub>4</sub> 21 75 4 0 0 0                                   | S <sub>5</sub> 4 2 12 70 2 0 2                                             | S <sub>6</sub> 1 1 17 1 0                                                   | 7<br>2<br>2<br>1<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0<br>0<br>0<br>0                                                                                                                                                                          | 0<br>0<br>0<br>0<br>86                                                               | 2<br>1<br>1<br>0<br>0                                                                                         |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8                                                                               | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)                                                                                           | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839                                                                                                    | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + 19 \\ + 11 \\ - \ 6 \\ + 10 \\ - \ 7 \\ - 27 \end{array}$                                                                   | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9                                                                               | S <sub>1</sub> 29 0 56 7 1 0                                                 | $S_2$ 1 2 27 0 30 0 14 23                                                                        | S <sub>2</sub> 57 22 3 16 0 0                                                      | S <sub>4</sub> 21 75 4 0 0                                     | S <sub>5</sub> 4 2 12 70 2 0                                               | S <sub>6</sub> 1 1 17 1 0 0 8                                               | 7<br>2<br>2<br>1<br>0<br>1<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>91<br>3                                                                                                                                                          | 0<br>0<br>0<br>0<br><b>86</b><br>0<br>6                                              | 2<br>1<br>1<br>0<br>0<br>5<br>45                                                                              |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9                                                                         | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)                                                                                  | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842                                                                                                           | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + 19 \\ + 11 \\ - \ 6 \\ + 10 \\ - \ 7 \end{array}$                                                                           | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9                                                                                      | S <sub>1</sub> 29 0 56 7 1 0 11                                              | S <sub>2</sub> 1 2 27 0 30 0 14                                                                  | S <sub>2</sub> 57 22 3 16 0 0 5                                                    | S <sub>4</sub> 21 75 4 0 0 0 0                                 | S <sub>5</sub> 4 2 12 70 2 0 2 5                                           | S <sub>6</sub> 1 1 17 1 0 0 8 9                                             | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0<br>0<br>0<br>0<br>0<br>91<br>3                                                                                                                                                          | 0<br>0<br>0<br>0<br><b>86</b><br>0<br>6                                              | 2<br>1<br>1<br>0<br>0<br>5<br>45<br>35                                                                        |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8                                                                               | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)                                                                                           | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553                                                                                             | $   \begin{array}{r}     + 3 \\     - 9 \\     + 19 \\     + 11 \\     - 6 \\     + 10 \\     - 7 \\     - 27 \\     - 25   \end{array} $                         | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3                                                                 | S <sub>1</sub> 29 0 56 7 1 0 11 1                                            | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0                                                          | S <sub>2</sub><br>57<br>22<br>3<br>16<br>0<br>0<br>0<br>5                          | S <sub>4</sub> 21 75 4 0 0 0 0 0 0                             | S <sub>5</sub> 4 2 12 70 2 0 2 5 2                                         | S <sub>6</sub> 1 1 17 1 0 0 8 9 68                                          | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>91<br>3<br>3                                                                                                                                                     | 0<br>0<br>0<br>0<br><b>86</b><br>0<br>6<br>9                                         | 2<br>1<br>1<br>0<br>0<br>5<br>45<br>35                                                                        |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9                                                                         | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)                                                                                  | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553                                                                                             | $   \begin{array}{r}     + 3 \\     - 9 \\     + 19 \\     + 11 \\     - 6 \\     + 10 \\     - 7 \\     - 27 \\     - 25   \end{array} $                         | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3                                                                 | S <sub>1</sub> 29 0 56 7 1 0 11 1 0                                          | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0                                                          | S <sub>2</sub> 57 22 3 16 0 0 5                                                    | S <sub>4</sub> 21 75 4 0 0 0 0 0 0                             | S <sub>5</sub> 4 2 12 70 2 0 2 5 2                                         | S <sub>6</sub> 1 1 17 1 0 0 8 9 68 3                                        | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0<br>0<br>0<br>0<br>0<br>91<br>3<br>3                                                                                                                                                     | 0<br>0<br>0<br>0<br><b>86</b><br>0<br>6<br>9                                         | 2<br>1<br>1<br>0<br>0<br>5<br>45<br>35                                                                        |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)                                                                         | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429                                                                                      | + 3<br>- 9<br>+19<br>+11<br>- 6<br>+10<br>- 7<br>-27<br>-25<br>0                                                                                                  | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3                                                                 | S <sub>1</sub> 29 0 56 7 1 0 11 (d)                                          | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C                                        | S <sub>2</sub> 57 22 3 16 0 0 5 0 0 5 0 0 COND <sub>2</sub>                        | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0                           | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1                                       | S <sub>6</sub> 1 1 17 1 0 0 8 9 68 3                                        | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4                                                                                                                                           | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4                                                | 2<br>1<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12                                                             |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)                                                                         | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429                                                                                      | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + \ 19 \\ + \ 11 \\ - \ 6 \\ + \ 10 \\ - \ 7 \\ - \ 27 \\ - \ 25 \\ 0 \end{array}$                                            | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0                                                            | $S_1$ 29 0 56 7 1 0 11 1 0 1 $S_1$                                           | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C                                        | S <sub>2</sub> 57 22 3 16 0 0 5 0 0 SOND <sub>2</sub>                              | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 S <sub>4</sub>            | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E                                  | \$6 1 1 17 1 0 0 8 9 68 3 . D.                                              | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4                                                                                                                                           | 0<br>0<br>0<br>0<br><b>86</b><br>0<br>6<br>9                                         | 2<br>1<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12                                                             |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)                                                                         | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429                                                                                      | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + 19 \\ + 11 \\ - \ 6 \\ + 10 \\ - \ 7 \\ - 27 \\ - 25 \\ 0 \\ \end{array}$                                                   | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0                                                            | $S_1$ 29 0 56 7 1 0 11 1 0 1 (d)                                             | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C                                        | S <sub>3</sub> 57 22 3 16 0 0 5 0 0 5 0 0 COND <sub>2</sub>                        | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 S <sub>4</sub> 1          | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E                                  | S <sub>6</sub> 1 1 17 1 0 0 8 9 68 3                                        | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4                                                                                                                                           | 0<br>0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0                                      | 2<br>1<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12                                                             |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)                                                                         | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429                                                                                      | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + \ 19 \\ + \ 11 \\ - \ 6 \\ + \ 10 \\ - \ 7 \\ - \ 27 \\ - \ 25 \\ 0 \end{array}$                                            | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0                                                            | $S_1$ 29 0 56 7 1 0 11 1 0 1 $S_1$                                           | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C                                        | S <sub>2</sub> 57 22 3 16 0 0 5 0 0 SOND <sub>2</sub>                              | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 S <sub>4</sub>            | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E                                  | S <sub>6</sub> 1 1 17 1 0 0 8 9 68 3                                        | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4                                                                                                                                           | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0                                           | 2<br>1<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12                                                             |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)<br>Vobs<br>1645<br>1425                                                 | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429                                                                                      | $ \begin{array}{c} + 3 \\ - 9 \\ + 19 \\ + 11 \\ - 6 \\ + 10 \\ - 7 \\ - 27 \\ - 25 \\ 0 \end{array} $ $ \begin{array}{c} \Delta \nu \\ - 13 \\ + 9 \end{array} $ | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0                                                            | $S_1$ 29 0 56 7 1 0 11 1 0 1 (d) $S_1$ 25 61                                 | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C                                        | S <sub>3</sub> 57 22 3 16 0 0 5 0 0 SOND <sub>2</sub> S <sub>3</sub> 78 10         | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 5 1 15                    | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E S <sub>5</sub> 3 3               | S <sub>6</sub> 1 1 17 1 0 0 8 9 68 3                                        | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4                                                                                                                                           | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0                                           | 2<br>1<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12                                                             |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)<br>Vobs<br>1645<br>1425<br>1177                                         | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429<br>Pealed<br>1658<br>1416<br>1192                                                    | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + 19 \\ + 11 \\ - \ 6 \\ + 10 \\ - \ 7 \\ - 27 \\ - 25 \\ 0 \\ \end{array}$                                                   | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0                                                            | S <sub>1</sub> 29 0 56 7 1 0 11 1 0 1 (d) S <sub>1</sub> 25 61 1             | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C                                        | S <sub>3</sub> 57 22 3 16 0 0 5 0 0 5 0 0 SOND <sub>2</sub> S <sub>3</sub> 78 10 0 | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 0 5 <sub>4</sub> 1 15 67  | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E S <sub>5</sub> 3 3 3             | S <sub>6</sub> 1 1 17 1 0 0 8 9 68 3                                        | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4                                                                                                                                           | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0                                           | 2<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12<br>S <sub>10</sub><br>3<br>0<br>1<br>0<br>5                      |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)<br>Vobs<br>1645<br>1425<br>1177                                         | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429<br>Pealed<br>1658<br>1416<br>1192<br>1089                                            | $\begin{array}{c} +\ 3 \\ -\ 9 \\ +19 \\ +11 \\ -\ 6 \\ +10 \\ -\ 7 \\ -27 \\ -25 \\ 0 \\ \\ \end{array}$                                                         | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0<br>4<br>0.8<br>0.6<br>1.3<br>—<br>1.8<br>2.3               | $S_1$ 29 0 56 7 1 0 11 1 0 1 (d) $S_1$ 25 61 1 3 0 5                         | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C                                        | S <sub>3</sub> 57 22 3 16 0 0 0 5 0 0 SOND <sub>2</sub> S <sub>3</sub> 78 10 0 1   | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 0 5 4 1 15 67 9 0 5       | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E S <sub>5</sub> 3 3 0             | $S_6$ 1 1 17 1 0 0 8 9 68 3                                                 | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78<br>78<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>3<br>3<br>7<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4<br>5<br>8<br>0<br>0<br>0<br>0                                                                                                                  | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0<br>5<br>9<br>0<br>6<br>82<br>0<br>3       | 2<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12<br>S <sub>10</sub><br>3<br>0<br>1<br>0<br>5                      |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)<br>20bs<br>1645<br>1425<br>1177<br>—<br>1030<br>(962)<br>(810)          | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429<br>Pealed<br>1658<br>1416<br>1192<br>1089<br>1049<br>940<br>823                      | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + 19 \\ + 11 \\ - \ 6 \\ + 10 \\ - \ 7 \\ - 27 \\ - 25 \\ 0 \\ \\ \end{array}$                                                | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0<br>4.3<br>0.6<br>1.3<br><br>1.8<br>2.3<br>1.7              | S <sub>1</sub> 29 0 56 7 1 0 11 1 0 1 (d)  S <sub>1</sub> 25 61 1 3 0 5 7    | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C  S <sub>2</sub> 2 22 26 0 1 0          | S <sub>3</sub> 57 22 3 16 0 0 0 5 0 0 5 0 0 5 0 0 5 78 10 0 1 0 13 1               | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 0 5 4 1 15 67 9 0 5 2     | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E S <sub>5</sub> 3 3 0 0 48 2      | S <sub>6</sub> 1 1 17 1 0 0 8 9 68 3 D. S <sub>6</sub> 1 14 8 1 0 9 1       | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78<br>78<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>1<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4<br>S <sub>8</sub><br>0<br>0<br>0<br>0<br>9<br>1<br>0<br>0<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0<br>0<br>6<br>82<br>0<br>3<br>0            | 2<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12<br>S <sub>10</sub><br>3<br>0<br>1<br>0<br>5<br>4<br>77           |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q10<br>Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7                              | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)<br>20bs<br>1645<br>1425<br>1177<br>—<br>1030<br>(962)<br>(810)<br>(767) | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429<br>Pealed<br>1658<br>1416<br>1192<br>1089<br>1049<br>940<br>823<br>764               | $\begin{array}{c} + \ 3 \\ - \ 9 \\ + 19 \\ + 11 \\ - \ 6 \\ + 10 \\ - \ 7 \\ - 27 \\ - 25 \\ 0 \\ \\ \end{array}$                                                | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0<br>4<br>0.8<br>0.6<br>1.3<br>—<br>1.8<br>2.3<br>1.7<br>0.4 | S <sub>1</sub> 29 0 56 7 1 0 11 1 0 1 (d)  S <sub>1</sub> 25 61 1 3 0 5 7 5  | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C   S <sub>2</sub> 2 22 22 16 0 1 0 38   | S <sub>3</sub> 57 22 3 16 0 0 0 5 0 0 5 0 0 5 0 0 5 78 10 0 1 0 13 1 1             | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 0 5 4 1 15 67 9 0 5 2 2   | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E S <sub>5</sub> 3 3 0 0 48 2 29   | $S_6$ 1 1 17 1 0 0 8 9 68 3 D. $S_6$ 1 14 8 1 0 9 1 3                       | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78<br>78<br>1<br>1<br>0<br>1<br>3<br>6<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4<br>5<br>0<br>0<br>0<br>0<br>91<br>0<br>0<br>91<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0<br>0<br>6<br>82<br>0<br>3<br>0            | 2<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12<br>S <sub>10</sub><br>3<br>0<br>1<br>0<br>5<br>4<br>77           |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q10<br>Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9                  | 1675 1620 1413 1144 1086 1058 (835) (812) (578) (429)                                                                                                    | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429<br>Pealed<br>1658<br>1416<br>1192<br>1089<br>1049<br>940<br>823<br>764<br>530        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0<br>4.3<br>0<br>1.8<br>2.3<br>1.7<br>0.4<br>1.9             | S <sub>1</sub> 29 0 56 7 1 0 11 1 0 1 (d) S <sub>1</sub> 25 61 1 3 0 5 7 5 0 | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C   S <sub>2</sub> 2 22 22 16 0 1 0 38 9 | S <sub>3</sub> 57 22 3 16 0 0 0 5 0 0 5 0 0 5 78 10 0 1 0 13 1 1                   | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 2 2 0 0 | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E S <sub>5</sub> 3 3 0 0 48 2 29 7 | S <sub>6</sub> 1 1 17 1 0 0 8 9 68 3 D.  S <sub>6</sub> 1 14 8 1 0 9 1 3 64 | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78<br>78<br>1<br>1<br>0<br>1<br>3<br>6<br>0<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4<br>5<br>0<br>0<br>0<br>91<br>0<br>0<br>0                                                                                                       | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0<br>0<br>6<br>82<br>0<br>3<br>0<br>11<br>3 | 2<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12<br>S <sub>10</sub><br>3<br>0<br>1<br>0<br>5<br>4<br>77<br>1<br>2 |
| Q1<br>Q2<br>Q3<br>Q4<br>Q5<br>Q6<br>Q7<br>Q8<br>Q9<br>Q10                                                                  | 1675<br>1620<br>1413<br>1144<br>1086<br>1058<br>(835)<br>(812)<br>(578)<br>(429)<br>20bs<br>1645<br>1425<br>1177<br>—<br>1030<br>(962)<br>(810)<br>(767) | 1672<br>1629<br>1394<br>1133<br>1092<br>1048<br>842<br>839<br>553<br>429<br>Pealed<br>1658<br>1416<br>1192<br>1089<br>1049<br>940<br>823<br>764<br>530<br>404 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                             | 0.2<br>0.6<br>1.4<br>0.9<br>0.6<br>0.9<br>0.9<br>3.3<br>4.3<br>0<br>4.3<br>0<br>1.8<br>2.3<br>1.7<br>0.4<br>1.9<br>2.2      | S <sub>1</sub> 29 0 56 7 1 0 11 1 0 1 (d)  S <sub>1</sub> 25 61 1 3 0 5 7 5  | S <sub>2</sub> 1 2 27 0 30 0 14 23 13 0 CD <sub>3</sub> C   S <sub>2</sub> 2 22 22 16 0 1 0 38   | S <sub>3</sub> 57 22 3 16 0 0 0 5 0 0 5 0 0 5 0 0 5 78 10 0 1 0 13 1 1             | S <sub>4</sub> 21 75 4 0 0 0 0 0 0 0 0 5 4 1 15 67 9 0 5 2 2   | S <sub>5</sub> 4 2 12 70 2 0 2 5 2 1 P. E S <sub>5</sub> 3 3 0 0 48 2 29   | $S_6$ 1 1 17 1 0 0 8 9 68 3 D. $S_6$ 1 14 8 1 0 9 1 3                       | 7<br>2<br>2<br>1<br>0<br>1<br>6<br>3<br>3<br>78<br>78<br>1<br>1<br>0<br>1<br>3<br>6<br>1<br>0<br>1<br>1<br>0<br>1<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0<br>0<br>0<br>0<br>91<br>3<br>3<br>0<br>4<br>5<br>0<br>0<br>0<br>0<br>91<br>0<br>0<br>91<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                          | 0<br>0<br>0<br>86<br>0<br>6<br>9<br>4<br>0<br>0<br>6<br>82<br>0<br>3<br>0            | 2<br>1<br>0<br>0<br>5<br>45<br>35<br>1<br>12<br>S <sub>10</sub><br>3<br>0<br>1<br>0<br>5<br>4<br>77           |

also contributes to the latter band. The  $r(ND_2)$ vibration takes part in both the 934 and 809 cm<sup>-1</sup> bands. The  $\nu$ (CN),  $b(ND_2)$  and  $r(CH_3)$ vibrations also contribute to the former band, and the  $\nu(CC')$  vibration to the latter.

The nature of the 1676, 1632, 1404 and 1152 cm<sup>-1</sup> bands of CH<sub>3</sub>CONH<sub>2</sub> is not much affected by the C-deuteration; they are found at 1672, 1620, 1413 and 1144 cm<sup>-1</sup> in CD<sub>3</sub>CONH<sub>2</sub>, The 1414 cm<sup>-1</sup> band is assigned to a composite mode in which the  $\nu(CN)$ ,  $\nu(CC')$   $r(NH_2)$ and  $\delta$ (NCO) vibrations take place. In CD<sub>3</sub>. COND<sub>2</sub>, it is found at 1425 cm<sup>-1</sup>, and the b(ND2) vibration contributes to this band instead of  $r(NH_2)$  vibration. The  $\delta_a(CD_3)$ vibration occurs at 1058 cm<sup>-1</sup>, which is lower by  $28 \, \text{cm}^{-1}$  than the  $\delta_s(\text{CD}_3)$  vibration. reversal of these two methyl deformation vibrations is often observed in the spectra of compounds containing CD<sub>3</sub> groups<sup>13</sup>). For the CD<sub>3</sub>-species of acetamide, the vibrational assignments of the observed bands below 1000 cm<sup>-1</sup> are very difficult, because of the presence of the bands arising from the CHD2-species contained in the sample. (The 1257 cm<sup>-1</sup> band is assigned to the CH bending vibration of the CHD2-species.) Aside from the bands of the CD<sub>3</sub>-species, CD<sub>2</sub> wagging, bending, rocking and twisting vibrations are expected to appear in this region. Therefore, the assignments given in Table IV are tentative. The features of the  $\delta(CC')$  vibration region are very interesting; four small peaks are observed around 420 cm<sup>-1</sup> in the spectra of both CD<sub>3</sub>CONH<sub>2</sub> and CD<sub>3</sub>COND<sub>2</sub>. The present calculations indicate that an interaction takes place between the  $\delta(CC')$  and  $r(CD_3)$  vibrations. It is also probable the vibrational interaction occurs between the  $r(CD_2)$  and  $\delta(CC')$  modes. However, the degrees of the interaction depend on the mutual positions of the CHD<sub>2</sub> group to the plane determined by the amide group. Several stable but non-equivalent configurations can be considered as for the positions of the CHD2 group, and this may be the cause of the complexity of the  $\delta(CC')$  bands.

Several bands can be assigned to the outof-plane vibrations. In the NH2-species, a broad band is found around 700 cm-1 and is assigned to the NH<sub>2</sub> wagging vibration. NH2 twisting band may overlap with this band. The corresponding bands are found around 500 cm<sup>-1</sup> in the ND<sub>2</sub>-species. A strong band found at about 640 cm<sup>-1</sup> in the ND<sub>2</sub>-species may be associated with the CC' out-of-plane vibration\*4. but the ND<sub>2</sub> twisting and wagging vibrations may also contribute to this band.

Force Constants. — The force constants in group A are associated with the  $O^{-}C^{-}N \stackrel{H}{\hookrightarrow} C$ part of the molecule and are transferred form formamide<sup>1)</sup>. As may be seen from the process of determining their values, they can be used without significant alternations in value. This is the second example of showing a fine transferability of the constants determined in the formamide molecule2). A stretching force constant, K, has often been used as a measure of the bond order or character of the corresponding bond. In the series of amides, the  $K_{CO}$ and  $K_{CN}$  values are always found, respectively, around 8.50 and 6.00 md./A and are considered to indicate the partial single and double bond characters of the respective C=O and C-N bonds. In urea, however, the  $K_{CO}$  value falls to  $6.47 \text{ md./A}^{14)}$ . The lowering of the  $K_{CO}$ value may partly be accounted for by the presence in urea of two C-N bonds adjacent to the C=O bond\*5. In the Urey-Bradley force field, the value of a given stretching constant is closely correlated with those of the repulsive constants around the bond. It is often odserved for a molecule which contains conjugated systems that some repulsion constants become very large<sup>17)</sup>. In such a molecule, the resonance term  $k_{ab}(\Delta r_a)(\Delta r_b)^{*6}$ , which is neglected in the Urey-Bradley field, is of considerable magnitude and affects the corresponding force constant  $F_{a...b}$ . In the present case, the  $F_{N...o}$ value is found to be as large as 1.50 md./A. The lowering of the  $K_{CO}$  value in urea as compared with that in acetamide can be explained by the superposed effect of  $F_{N...O}$  from two adjacent C-N bonds. It should be noted that the direct comparison of stretching constants sometimes leads to an incorrect conclusion, especially when some repulsive force constants are considerably large.

The force constants in group B are primarily

<sup>11)</sup> T. Miyazawa, T. Shimanouchi and S. Mizushima, ibid., 29, 611 (1958).

<sup>12)</sup> T. Miyazawa, J. Chem. Soc. Japan, Pure Chem. Sec.

<sup>(</sup>Nippon Kagaku Zassi), 76, 1132 (1955).

13) For example, H. C. McMurry and V. Thornton, J. Chem. Phys., 19, 1014 (1951).

<sup>14)</sup> A. Yamaguchi, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zassi), 78, 1319, 1467 (1957).

<sup>\*4</sup> In the NH<sub>2</sub>-species, the corresponding band can not be found; it is probable that the band is overlapped with that of the &(NCO) vibration at about 560 cm-1.

However, the reported value of 1.26 Å for the C=O bond in urea15) is not much different from that of 1.255 A in formamide<sup>16)</sup> and only a little shorter than that of 1.28 Å in acetamide9)

<sup>15)</sup> A. Yamaguchi, T. Miyazawa, T. Shimanouchi and S.

Mizushima, Spectrochim. Acta, 17, 719 (1961).
16) J. Landall and B. Post, Acta Cryst., 7, 559 (1954).

<sup>17)</sup> T. Miyazawa, J. Chem. Soc. Japan, Pure Chem. Sec. (Nippon Kagaku Zassi), 77, 381 (1956).

<sup>\*6</sup>  $r_a$  and  $r_b$  denote the bonds resonated with each other, and  $k_{ab}$  is a force constant. In fact, Scherer and Overend include the analogous term in the normal vibration calculation of the benzene molecule18)

<sup>18)</sup> J. R. Scherer and J. Overend, Spectrochim. Acta, 17, 719 (1961).

1286 [Vol. 35, No. 8

concerned with the C-C bond of the molecule. The present results, if combined with those of N-methylformamide, give the reliable set of force constants necessary to describe the peptide skeletals:  ${}^{C}_{O} > C-N < {}^{H}_{C'}$ . The force constants in group C are concerned with the CH3 group, and it is shown that the values of the force constants recommended in our laboratory can also be used in this molecule.

The present author wishes to express his deep gratitude to Professor Takehiko Shimanouchi for his kind guidance and encouragement in the present work. His thanks are also due to Professor Hidetoshi Takahashi for the use of a PC-1 computer.

Department of Chemistry Faculty of Science The University of Tokyo Hongo, Tokyo